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VII. The Aerodynamics of a Spinning Shell.— Part 11.

By R. H. FowLer and C. N. H. Lock.

A A

Communicated by H. W. Ricamonp, F.R.S.
Received August 17, 1921,—Read February 9, 1922.

§ 1. Introduction.

IN a previous paper* the authors, with others, have described observations of the
angular oscillations of the axis of a 3-inch shell over the first 600 feet from the muzzle
of the gun, and from an analysis of the observations have obtained information about
the forces due to the air. In the experiments, shells were fired from two guns giving
different degrees of axial spin to the shell. While the shells fired from the gun giving
the more rapid spin were all stable, most of the shells from the other gun were slightly
unstable, this condition being shown by the much larger maximum yawt developed.
These unstable rounds were not analysed in (A) as no suitable method of doing so had
then been devised.] The analysis of these rounds, about one-third of the number
fired, forms the subject of the present paper; the results confirm those of (A) and
provide some additional information.

The information as to the force system obtained from the stable rounds was
confined to yaws up to 7 degrees or perhaps 10 degrees; by analysis of the unstable
rounds this information is extended, though in a fragmentary manner, over the region
up to 35 degrees of yaw. On the other hand, no information has been derived from
the observed damping of the unstable rounds. The observations are, in respect of
the damping, clearly in qualitative agreement with the theory and results of (A), but
no method has been devised of making a quantitative analysis of the damping.

The force system on a model shell was also determined at low velocity in the wind
channels of the National Physical Laboratory. The results are shown in fig. 2 of (A)
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* “The Aerodynamics of a Spinning Shell,” ‘ Phil. Trans.,” A, vol. 221, p. 295 (1920). This paper
will be cited as (A). The experiments analysed here and in (A) were carried out for the Ordnance
: Committee, and the results are published with their sanction.
T The “yaw ” is the angle between the axis of the shell and the direction of motion of its centre of
gravity.
1 As will appear later, the ordinary solution in elliptic functions of the equations of motion of a top
is not adequate for this purpose in the case of large yaws.
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228 MESSRS. R. H. FOWLER AND C. N. H. LOCK ON

and have been used in both papers for extending the results down to low velocities,
as in figs. 1 and 2, here.

Shells of four different types, I.-IV. were used. Types I.-III. were of the same
external shape (form A), with three different positions of the centre of gravity.
Type IV. was of a different external shape (form B). The details are given in (A).*

The experimental data, which have already been discussed in (A), consist of the
mass, principal moments of inertia, and position of the centre of gravity for each type
of shell ; rough values of the forward velocity over the whole range of 600 feet from
the muzzle of the gun ; the spin of the shell, deduced from the rifling of the bore; the
yaw and orientation of the shell’s axis at a number of points along the range, deduced
from the shape and orientation of the holes punched by the shell in cardboard targets.
These cards were set up at intervals of about 60 feet for all the unstable rounds, and
it appears from figs. 12 of (A) and figs. 3 and 4 of this paper that they were close enough
together for satisfactory curves to be drawn through the observed points representing
the variation of the yaw ¢ and its azimuth ¢ over the whole range.

§ 2. The Equations of Motion.

It is convenient to recapitulate the notation of (A). Suppose that OA denotes the
direction of the axis, OP the direction of motion of the centre of gravity of the shell ;
then AOP = 8, and ¢ is the angle that the plane AOP makes with a fixed plane
through OP. M (= u sin ) is the couple in the plane AOP which tends to increase d,
A, B and N are the principal moments of inertia and the axial spin of the shell, and we
write Q == AN/B. Then the equations of motion will be taken in the formf

3’2+¢’2sin”3+j~2§”olcos8=E,. N )
¢ sin®d+Qcosd=F, . . . . . . . . . (2

where E and F are constants. The various assumptions underlying equations (1)
and (2) are discussed in detail in (A). If u is constant the equations are, of course,
of the same form as the ordinary integrals of energy and angular momentum for a
spinning top, and the complete solution in elliptic functions is standard.

When M is an arbitrary (odd) function of ¢ the top solution no longer applies, but
a solution in elliptic functions is still possible if M has the form X sin § {1—Y (1—cos J)},
where X and Y are constants. This more general form allows the first two terms in
the expansion of an arbitrary M to be catered for and can represent M adequately

* Loc. cit., p. 316 and fig. 6. See also fig. 1, here.

T (A), loc. cit., p. 334, equations 3.404, 3.405. For the underlying assumptions see (A) Part L., pp. 301 sgq.,
311 sqq. These equations are, strictly speaking, not referred to fixed axes, but are approximate equations
referred to axes changing direction with OP. Dashes denote differentiations with respect to the time 2.
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THE AERODYNAMICS OF A SPINNING SHELL. 229

over a wider range of values of §. By suitably adjusting X and Y, which define the
couple, and the initial conditions, a curve showing the variation of § with the time
can be obtained which agrees closely with observations over a complete half-period,
so that the above expression for M appears to be adequate up to values of § of 35 degrees.*
Our original approximation with Y = O fails in general when ¢ > 10 degrees. The
observed curves suffice to determine X and Y for each round, and as observations
were taken for a number of different values of the muzzle velocity, M is determined
by the experiments over a limited range, as a function of the two variables, v, the
velocity of the shell, and .

In solving the equations of motion it is convenient to express the couple by means
of the non-dimensional coefficients s and ¢ defined by the equation
_ BZs

4:“5{1—4%(1—0058)}. P €3]

M

It will appear that the motion with § permanently zero is stable or unstable
according as s>1 or s<1. For the rounds here analysed, s lies between 1-06
and 0-83. :

In expressing the results in a standard form it is convenient to use a different
non-dimensional coefficient fy, which is independent of the mass, moments of inertia,
size and velocity of the shell, and depends only on the shape of the shell and the
non-dimensional variables v/a and §, where @ is the velocity of sound. This is defined

by the equationf
M= p0*®sind fyy (vfer, &), . . . . . . . . . (4)

where p is the air-density, » the radius of the shell, and the quantities involved are
expressed in consistent units. ,

According to (3), fy is practically constant so long as § <7 degrees, and the value
of fu (v/a, 0) is strictly comparable with similar values obtained in (A) by analysis
of the stable rounds on the assumption that fy; is independent of .

§ 8. Final Results of the Experiment.

Fig. 1 shows curves of fy (v/a, 0) as a function of v/a for the four types of shell
corrected for the effect of the cardsf. They are reproduced without alteration from
figs. 4 and 5 of (A) and represent the results for the stable rounds.§ The values
derived from the present analysis of the unstable rounds are plotted for comparison ;

* When the yaw exceeds 30 degrees the fit is less satisfactory (e.g., III., 11-13).

T Loc. cit., p. 302, equation 1.103.

1 §10 below. .

§ The curve for type II. is not actually given, but the data for drawing it can be found in (A) (fig. 13,
p. 352).

2 K 2
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230 MESSRS. R. H. FOWLER AND C. N. H. LOCK ON

they show remarkably good agreement between the new results and the old. This
confirms the substantial truth of the whole theory; in particular, the agreement of
the results for the two twists of rifling verifies that the couple M is unaffected by a
change in axial spin in the ratio 3 to 4.

14
3
Vo N
10 _/ /i(/_\\\\es ]
Im // © 3 \\ '\{
5 Im J T~
— s

v :
6 /. 5

1
/g Vs N
fM r/ \ A%
4 Wy N ;;}—-—-”""”
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OO 02 0-4 0-6 0-8 10 1-2 1-4 1-6 1-8 2-0

Fig. 1. Values of the couple coefficient fy (v/a, 0) and the normal force coefficient fy (v/a, 0) plotted
against v/a, corrected for the effect of the cards. The full curves for fy for types I.-IV. are reproduced
without alteration from (A). The plotted points show the means of observations here analysed for the
first and second half-periods, and the numbers against them show the number of rounds contributing to
cach mean. The group marked * was analysed in (A) by a different method with identical results. The
origin of fy for type IV. is displaced downwards 4 units.

The full curve (V) for fy (shells of form A) represents the complete results of the experiment. The
dotted curve reproduces the partial results of (A).

Curve T.—fy for 3-inch shells of form A with centre of gravity 4-20 inches from the base. (Type III.)

Curve II.—The same with centre of gravity 4-73 inches from the base. (Type I.)

Curve ITI.—The same with centre of gravity 5-08 inches from the base. (Type II.)

Curve IV.—The same for form B with centre of gravity 4-965 inches from the base. (Type IV.)

Curves of fy sin J, the complete moment coefficient, considered as a function of
both variables v/a and ¢ corrected for the effect of the cards, are plotted against
§ in fig. 2. The information is somewhat fragmentary : in addition to wind channel
results, values of fy, when 0> 10 degrees, are available for shells of type I.-III. for
two velocities near v = a. For type IV. (pointed shells) values of f for large § are
wanting in this region, but exist for two high velocities, and one less than a.
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THE AERODYNAMICS OF A SPINNING SHELL. 231

Some general information can be deduced from these curves. At high velocities
(v/a = 2-0) and large values of ¢ the couple coefficient actually falls below its low

11~
0-06
10 . _ 0-79 /
1‘1 f1-38
e
oL 1 5
A i
MSIH / /
. v 4
7 -

-0-98 0-96

N
;

\\\
AN
N
\
\\
|

A7 T
0 ///
| v

.

Fig. 2. Curves of the complete couple coefficient fy (v/e, 8) sin & against & for various values of v/a
(as shown against the curves). The curves stop at the greatest value of & for which observations are .
available.

The origins of all the curves except for type IIL. are displaced upwards and can be recovered from the
fact that all curves pass through their respective origins. The scale of & is in degrees.

velocity (wind channel) value (fig. 2) ; the curve of the couple coefficient against yaw
has here a large.curvature downwards. It is, on the other hand, almost straight in
the region of the velocity of sound.
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232 MESSRS. R. H. FOWLER AND C. N. H. LOCK ON

We may notice also the peculiar behaviour of rounds ITI. (11-13), fig. 3,* in which
the motion seems to become quite irregular from round to round after the first
maximum yaw is attained. As these are the only rounds in which a yaw of 35 degrees
or more is developed, it seems likely that some peculiar change in the type of the
airflow occurs at or about this angle, analogous to the phenomenon of * burbling.”t

Rounds TV. (10-12) have the smallest velocity of any group fired ; the agreement
of fy for these rounds with wind channel results for the whole range of 8, figs. 1 and 2,
1s very satisfactory. .

The new values of fy (v/a, 0) can be used to correct slightly the mean curves of fy,
and from the modified curves the value of fy, the coefficient of the force normal to
the shell’s axis at small yaw, may be re-determined by the method used in (A), § 1.13.
The re-determined curve for fy is shown in fig. 1. The values differ only slightly from
the former values, and the main features of the fy curve are fully confirmed.

The final results of the complete experiment, stable and unstable rounds alike,
corrected for the effect of the cards, have been combined together to give the final
values of fy; (v/a, 0) for shells of types I. and IV. and f (v/a, 0) for type 1. shown in
Table I., which replaces the corresponding Table I. of (A).

TaBre I.—TFinal values of fy (v/a, 0) and fy (v/a, 0) for shells of type I. and fy; (v/a, 0)
for shells of type IV., embodying the results of the whole experiment. The effect of
the cards has been corrected for as far as possible, and this table supersedes Table I.
of (A).

— SR - |

Shells of type 1. Type IV.
ofa. e T
- fu(v/a, 0). Jx (v/a, 0). Ju (v]a, 0).
_ R (- S ]
‘Wind channel 8-57 2 3-34 8-95
0-7 8-6 3-35 9-0
0-8 9-05 4-0 9.7
0-9 10-35 5-2 11-1
1-0 11-55 5-25 11-75
1-1 11-55 4-7 11-6
1:2 11-25 3-9 11-4
1-3 10-9 3-7 11-25
1-4 10-55 3-85 11-1 !
1-5 10-3 4-0 11-0 |
1-6 10-05 4-15 10-95
1-7 9-85. 4-3 10-9
1-8 9-65 4-5 I 10-8
1-9 | 9-4 — | 10-75
2-0 9-15 | — — |
j }

! . t
! ' |

* Also (A), p. 349, fig. 128. _
1 This term is commonly applied to the sudden increase of turbulence behind an aerofoil at the critical
angle.
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THE AERODYNAMICS OF A SPINNING SHELL. 233

§ 4. The Solution of the Equations of Motion.

We shall now solve the equations of motion (1)‘ and (2), assuming that M is of form (3).
We take first the case of rosette motion, in which zero values of § can occur, so that we
may assume the initial conditions

d=0, & = bQ.
Eliminating ¢" and writing sin 30 =y we get
by = O (1—y) =y +y* (1=y") (Ufs—4qy’)}. . . . . . (5)

The right-hand side is a cubic in %2 whose roots are such that it may be written in

the form ‘
W = 1g2 W) (@) ), (P <1<1ad) . . . (o)

Formulee connecting® 4, @ and f with b, ¢ and s may be obtained most conveniently
by putting 4= 1, »2 =0, and by differentiating with respect to y* and putting
y* = 0. The resulting formulee are

4q(1+2) (1=a®) (fP=1)=1, . . . . . . . . (7)
dga’h’f2=0. . . . . . . . . . . (8
dq (P fP—a’W =R %) = =0+1fs—=1. . . . . . . . (9)

A solution of (6) is obtained by assuming, in the usual notation of Jacobian elliptic

functions,
2 2
2 a cn u
=1z g°sn®u (10)

where the constant ¢ and the modulus £ of the elliptic functions remain to be determined.
If we solve (10) for cn?w« and differentiate, we get

2 2 4
—snucnudnuu = Q—Q—g—)—g%

: (@ =g*y")
leading to v
12
0 = g (@) (=) (2 (1) + (B

Comparing this with (6) we may write «' = +\Q, A constant, and obtain

=l . . . . . o . ... (1
s P (1—&
Ng? (702——92) '

R (

# This @ has, of course, no connection with the velocity of sound.
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234 MESSRS. R. H. FOWLER AND C. N. H. LOCK ON

Since ¥ = 0 when ¢= 0, we may write u = K—\Q¢, where K is the complete
elliptic integral of the first kind to modulus k. Treating Q¢ as independent variable,
the final form of our solution contains four constants @, x, k& and g, which must be
‘completely determinable in terms of s, ¢ and b, so that there must be an independent
relation between a, X, £ and ¢ by which any one can be found when the other three
are known. To determine them it would be necessary to solve (5), the original cubic
in 2. To analyse the experiments, however, we have to solve the inverse problem
of determining s, ¢ and b when a, \, &k and g are known. In practice ¢ is small so
that, as a first approximation, we may use the following simplified form of (10) :—

y=acn (K—=xQ¢), . . . . . . . . . (14)

where @, & and X may be treated as independent. By fitting a curve of this type to
the curve of observed values of y (sin 19) against Q¢, we can determine the constants
a, x and k. It is at once clear that ¢ = sin {a, where « is the maximum yaw, but
we shall continue to call this constant ¢ for shortness. The value of g can then be
obtained from the identical relation in terms of a, k, A, and the curve re-calculated by
formula (10) if ¢ is large enough to make it worth while to do so. After that the
values of a, x and £ could be re-adjusted and the process repeated. Theoretically,
we could presumably arrive at the precise solution in this manner by a limiting
process. Practically, in nearly every case, the first approximation with ¢ = 0 is all
that is required.

The values of s, ¢ and b are given by simple formulz in terms of a, x, k and g. From
(8) and (9) we get -
1[s—1 = 4q (W f+ a*f* —a’h* = hif?) ;

on substituting for ¢, 4% and f? from (11)-(13), this reduces to
2 2_q. 2
1[s—1 = 4?\2{—008 2k + 99—5-—%@9—2%9-2}, R ¢ X))

where & = sin x.* In practice either @ or cos «, or both, are small and g is of the same
order as @ ; the second term inside the bracket may then be neglected in determining s,
in which case the value of g is not required. This, as we shall see, is really a consequence
of the smallness of b, its mean value in practice being about 0-015. For ¢ write
equation (7) in the form

dg+ —— = 4q (P =1+ 1),

and substitute for ¢, A? and f? in the right-hand side, getting

4q=—-1—z+a{sm 99-8——'(—@—?—2—9—21 .o . (16)

1—af

* This x will not be confused with the « of (A), loc. cit., p. 328, which is the damping coefficient depending
on the cross-wind force.
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THE AERODYNAMICS OF A SPINNING SHELL. 235
Finally equation (8) gives
bzzm...........(w)
l-g
The equation for g is obtdined by substituting for ¢, #* and f* in (7), which becomes
N (1—a?) (0’ —g?) {&*—g*+ (1—a”) B*} —at (1—g*) = 0; . . . (18)

this is a quadratic for ¢2, whose solution may be written

1
g° = sin® 1o (1 - I-Ga—;xz-g> , (sinda=a), . . . . . (19)
where 0 is given by
cot 0 = A cot’ a— (tan® Fa)f4x. . . . . . . . (20)

The ambiguity is settled in practice by the fact that g must be small if equation (14)
is to be taken as a first approximation to the solution. In practice, as we have said,
bis small. Valuable information as to the nature of the solution is, therefore, obtainable
by considering its limit as b~ 0. This gives us a guide as to the actual relative order
of all terms. '

Let us suppose then that b -~ 0, that s and ¢ are deﬁnite‘constan"os, and let us assume
that ¢ is of the same order as @, which by (19) and (20) must be the case unless A - 0.
Then equation (17) shows that X\*a? cos?* x/(1—g?) >0, and, therefore, in the limit,

Ifs—1 =—4\cos 2. . . . . . . . . . (21)

Equation (21) shows that, if s 1, x>0 is impossible. Hence in all cases (s » 1)
our assumption as to g is justified and @ cos x> 0. This also justifies our previous
statement concerning (15). There are now two cases according as s <1 or s> 1.

Case (1).—s < 1. We are supposing that s—1 is fixed, so that as b - 0, s—1 is large
compared to b. To satisfy the signs of (21) we must have «>45 degrees. This
implies sin? k > %, so that (16) becomes in the limit

ly — 1 4N° sin’ «
4q = 1—a’ + a? '

It follows that @ - 0 is impossible, and therefore cos k >0, x > 90 degrees, and @ and \

tend to definite non-zero limits. The limiting forms for 1/s, ¢ and ¢ are easily found

to be

s—1=4N, . . . . . . . . . . (22)
4qg = —sec® fa+4N\cosec’ e, . . . . . . . . (23)

g° = sin® Lo {1— (tan® Ja)/4N*}, . . . . . . . (24)
VOL, CCXXII,—A., ' 2 L :
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in which we have replaced @ by sin }a. These formule are good approximations in
practice, when s is not too close to unity. The half-period QT* (= K/)) tends to
infinity, but so slowly that no difficulty occurs in practice. Since o, the maximum
yaw, does not tend to zero with &, the initial disturbance, we have here what may be
called the unstable case.

Case (ii).—s>1. We now must have « <45 degrees and, therefore, as cos? x >,
a > 0 at the same rate as b ; this is the stable case in the usual sense. lquation (16)
shows further that «->0, and, therefore, by (15), X has a definite limit determined

by
1—1fs = 4N"

For given q equations (16)—(20) determine the limiting ratios of b :sin fa: k:g.
The case in which s = 1 and b -~ 0 can be treated in a similar way. It is found that
x > 45 degrees and o and X both tend to zero like ,/b.

§ 5. Rounds with a Non-Zero Minimum Y ow.

We shall only consider cases in which the minimum yaw g is small, and shall take

as initial conditions
=B, y =0, ¢ sin § = 0, Q.

The equations of motion become

¢’ sin §—Qb, sin B+Q (cos B—cos &) =0, . . . . . . (25)
. . . 2
&+ p” sm%—Q‘bf—f—J Ldcosd=0 . . . . . . (26)
s B .

If we write y,* = sin® §d—sin® {8, y, vanishes initially and the equation for y, may be
written

4y’ = Q" {b)* (cos B—y*) =y’ — by sin B

+ (sin BB+95%) (cos'3B—pi®) [1fs—dq (sin* 4B+9)]s. . . (27)
We identify (27) with the equation
4y = 4992 (h12+f§/12) (0612—'?/12) (ﬁ?_yl2)9 e e e (28)

in which a2 = sin? {a—sin? §8. Equations (10)~(13) retain their form, and (7)-(9)

become
(br sin §B+cos $8)* = 4q (h*+cos* $8) (fi’—cos’ $8) cos’ $a, . . . (29)

b = (b, cos §B8—sin $B)° = 4q (h*—sin® £8) (/2 +sin? 6) sin® 3, . . . (30)
—b*+(1/s) cos B—1—4q sin® 1B (2 cos® §B—sin 18) = 4q (a?fi=h'a’=h2f?). . (31)

* T is the time interval between a zero or minimum and an adjacent maximum of the yaw.
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The solution is
2 2
9 a,” en’ u
= = - t
g./I [pp— (v = K=2Q1),

or
(sin® fa—sin® 1B) en’ u
L—g*sn®u o

sin® $d—sin’48 = (32)

The values of s and ¢ in terms of X, sin %a, k and g will differ from the values they
had before by terms of the order sin? 3 or b sin 8 which are negligible in practice
compared to a,>. Hence the previous solution may be applied provided that (32)
replaces (10) in calculations of the curve of sin 44 as a function of Q¢ For convenience
in computing, (32) may be put in the form (neglecting ¢?)

- N
. sin Lo cos sin 48 sin
sin 6 = —2 X _ S pf X .. ... . . (3%
v sin 6 cos 0
where
tan 0 = sin ta cot x/sin 1, cos x = cn u.

Formula (17) remains a valid approximation for b? provided 0? is defined by (30).

§ 6. A Discussion of the Probable Effects of Damping, and Other Factors Omatted in the
o Foregoing Solution.

Up to this point we have assumed that the motion in yaw is exactly periodic with
half-period QT. This would be exactly true if the couple M were a function of § only,
OP a fixed straight line, and no other couples existed. In actual fact, M is'a function
of the forward velocity and therefore of the time; OP changes direction under the
influence of gravity and the cross-wind force, and other couples besides M act on the
shell, depending on the angular velocity of the shell. All these factors cause progressive
changes in the curve of yaw from period to period ; for the case of the stable rounds
‘they have been discussed at length in (A), where it is shown that they do not appreciably
“affect the determination of M at any velocity for small values of 4. In particular,
the effect of gravity is almost entirely allowed for by using (as we do) the true yaw
and not the angle between the axis of the shell and some fived straight line. As explained
in (A)* the shape of the hole in the cards determines the true yaw and not the angle
between the axis of the shell and the normal to the card. -

There is no reason to expect that any of these damping effects will be relatively
more important for an unstable than for a stable shell, except for the change of M with
the velocity. Although the change in velocity over a single period is always small,
yet when s is less than or nearly equal to unity a small change in M will cause a fairly

* Loc. cit., p. 318, footnote.
2 L2
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large change in the type of motion. This is shown clearly in fig. 3, round III. 16,
where the decrease in amplitude and the change from an unstable to a stable type is
quite marked, but still not sufficient to introduce any error in the determination of
the couple for a single half-period. The effect is illustrated by the change in s in
successive half-periods (Table III.), which is in general in the direction, and roughly of
the amount, required by theory.

045 I

~ |

i ]

VARN
74 B

03 A

A \
025 a / \

sink§
02

// J A N
o '//V// A >§(‘\q\ 1
NP/ NI

A NN KL
AV N

1.~ -
0 5 10 7T 15at 20 25 30 35 40 45 50 55 60
——

Fig. 3. The observed and calculated motion in yaw, compared for selected rounds. The plotted
points show the observed values of sin 8 plotted against Q¢ for rounds III. (11, 16) and IV. (8, 9). The
continuous curves are the result of calculations described in detail in §§ 6, 8. Short vertical lines mark
the positions of maxima and minima, and the origins of co-ordinates. The values of the constants used
are as follows :(—

ITL. 11. (@) x = 80 degrees; (b) x = 85 degrees, g> = 0; (c) x = 85 degrees, ¢> = — 0-185.

IIL. 16.  (a) x =80 degrees; (b) x = 60 degrees, 8 =0; (c) x = 60 degrees, sin {8 = 0-037 ;
(d) k = 40 degrees, sin 18 = 0-037; (e) x = 0, with third order contact with (a) at maximum.

IV. 8. (a) «x = 85 degrees ; (b) x = 75 degrees, sin 18 = 0-034. :

IV. 9. (a) « = 60 degrees ; (b, ¢) x = 70 degrees.

It appears that a change in M with » cannot alter an initial rosette motion into one
with non-zero minimum yaw. This alteration, as in the stable case, must be due to
the other couples depending on the angular velocity of the axis, and to the sideways
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motion of the centre of gravity, which function as damping forces as explained in (A).*
No means of dealing with these effects theoretically has yet been devised for the case
of large yaw ; the observed changes are clearly of the general type which one’s experience
of the stable case would lead one to predict.

§ 7. The Motion in ¢.

It is not difficult to write down a formal expression for the motion in ¢. If we take
equation (25) and substitute for sin 1§ from equation (32) we obtain after reduction
Q bQ sin 18
L+cosd  (1+cosd)y”’
__Q bQ sin 1B 1—g*sn’u ’
I4+cosd  1+cosd (1—g°) sin® 4B sn” u+sin® e cn® u

¢ = (33)'

where b is defined by (30). Now even when « is as big as 30 degrees there is still only
a maximum difference of 7 per cent. between 14-cos § and 2, and this maximum is
only effective for a short part of each period. Hence, for almost all purposes, we are
still justified in replacing 14-cos § by 2t. In order to integrate this equation we notice
that \Qdt = —du and that ¢ = 0 or 4 = K corresponds to the minimum. Thus,
b sin 16 jK (1—¢’sn’u) du

oA Ju(1—g%) sin® 4B sn” u +sin® e en®u”

¢ = do+3Qt+ (34)
This equation contains an elliptic integral of the third kind which can be evaluated
in ¢-functions. We have not, however, made this evaluation or calculated any actual
¢-curves from (34) mainly because it does not appear that any further information as
to the forces acting on the shell would be obtained thereby. We shall content ourselves
in this paper with a statement of sufficient theoretical results to show that the observed
¢-curves are qualitatively of the form to be expected from (34). A more detailed
discussion of these curves, however, would, we think, be of some interest,

It is convenient to treat the motion by using the variable v = ¢—g¢,—5Q¢.
When g is zero, ¢’ will be constant and equal to £Q to our present approximation ;
with y and v as polar co-ordinates the motion then consists of an oscillation in a straight
line through the origin, for ' = 0. In the general case we may eliminate d¢ between
equations (33)" and (28), and on substituting for & from (30) obtain an equation for
dy/dy, in the form]

P R O
=) = - —1){ == 1 o l— —m—2——). . (35
<(lg/f) v (smz % sin® Ja * hy®—sin® & ( JP+sin®d (35)

If we assume that A2 and f;> are large compared to sin? }«, the last two brackets

* In particular sec p. 313.

1 It is easy to estimate the precise effect of this approximation in the simple case of the rosette motion.
The error caused is always very small.

1 In deducing (35) we replace 1--cos 8 by 2.
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in (35) are effectively unity, and the equation reduces to that of an ellipse in polar
co-ordinates with axes sin Ja, sin}8. This tends to a straight line as the limiting
form when g--0. ’ :

The same (simplified) relation between ¢ and + was obtained in (A)* for the case
of small yaw only. The elliptic motion may be calculated most easily by recognising
that + is the auxiliary angle 9 of equation (33) so that

¢ = o+ 52 +6.

The conditions under which this approximation is valid may be seen by reference to
equations (11) and (12) which are satisfied by fi2, A% and 2. We notice that f;? is
never small compared to unity and tends to infinity as ¢, and therefore ¢ tends to zero ;
while %2 may be comparable with @,* unless £ is small. Thus the approximation is
really only valid for s > 1, in which case it applies even if 8 is not small compared
to «. Finally, if 1—£%? is small, equation (12) shows that k2 will be small compared
to a,%, and the third bracket in (35) will be more important than the second near a
minimum of % ; this indicates that the shape of the (y, ) curve there approximates
to an hyperbola instead of to an elongated ellipse ; the curve may also no longer be
re-entrant, the total change of v in one period differing from + .

Examples of all these results may be seen in fig. 4, in which the observations for
three different rounds are plotted with (y, ) as polar co-ordinates. For round I. (5),
for which g is small and the shell just stable, we find the expected elongated ellipse-like
curve, with a slowly-developing minor axis caused by the damping factors. In III. (16)
x = 80 degrees for the first half-period, diminishing to 40 degrees for the third; a
considerable minimum yaw developes and the curve is less like an ellipse, though the
maxima are still nearly 180 degrees apart. Finally, in IV. (8) « = 85 degrees, falling
to 75 degrees, and the shape of the curve near the minimum clearly resembles an
hyperbola ; we may guess then the angle between the two maxima is somewhere about
100 degrees instead of 180 degrees. , ’

Lastly, a word must be said about the observational determination of (, which is,
of course, theoretically determined by the muzzle velocity, twist of rifling and moments
of inertia of the shell. In all cases the slope of the ¢-curve over the first half-period,
‘or rather more, is uniform and well determined. Since 8 appears to be really very
small initially one may expect from theory the slope of this part of the curve to be
1Q whatever the value of «. The agreement between this observed slope and the
calculated value of Q is satisfactory.

§ 8. The Method of Analysis.

The method of analysis of the sin d-curves will now be explained with reference
to fig. 3. After the observed values of sin 1 have been plotted against €, the values

* Loc. cit., p. 346, equation 4.06.
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of Qf corresponding to the ends of half-periods can be determined from the symmetry
of the curve, with the exception of the start of the first half-period. This must, of
course, be near the muzzle, but need not be actually at the muzzle, and its precise

e of cms.

Fig. 4. Curves showing the observed angular motion of the axis with (sin}S, ¢) as polar
co-ordinates (¢ = ¢p—po—34Q). The circles show the observed points and the curves are
drawn freehand through them.

For I. (5) 1 em. represents 0-01 in sin 3.
For II1. (16) and IV. (8) 1 cm. represents 0-02 in sin 3.

position must be guessed. The values of sin}a can be obtained from a rough curve
drawn freehand through the observations. Each half-period is then analysed separately
and the only additional constant (when B = 0) required for computing a curve, by
the approximate formula

' sin 30 = sin e en (K—\Q¢, k),

is the value of £ or sin x. This may be approximated to with the help of the following
artifice. Draw by eye a cosine curve (fig. 3, III. 16, first half-period) to have third
order contact with the observed sin }J-curve at the maximum and to cut the axis
at T. Then the ratio of NT to the half-period NP must be #/2K. For all curves of
the form y = A en (K—p%), for different values of k, have third-order contact at the
maximum ordinate, and a cosine curve is the limiting case, in which K = {z. A first
estimate of « can usually be made by this method to the nearest 5 degrees, when
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k > 45 degrees. If necessary, similar curves are drawn for other values of « (rounds
I1I1. 11, III. 16) and the true values of «, sin $a and QT (the length of the half-period)
finally settled by interpolation.

If required a curve can be calculated by the exact formula (10) after g has been
determined by (19), but the change of shape is negligible unless sin }« and, therefore, ¢
is very large. An example of the effect of including ¢ is shown in fig. 3 for III. (11),
but round III. (11) and its companions are the only ones in which g had any sensible
effect. Rounds 1V. (8 and 9) illustrate the effect of a considerable alteration in &
(representing the initial disturbance) in causing, when s < 1, a considerable change in
period but only a small change in amplitude. The fit obtained between calculated
and observed curves is generally good. The selected curves in fig. 3 are a fair sample
of the whole.

When the minimum yaw 3 is not zero the curve is first calculated as above, as if
8 =:0, and then corrected by (33), using the observed value of B, which is obtained
like a from a rough curve. An example of such curves will be found in fig. 3 for the
second half-period of IV. (8) and the second and third half-periods of III. (16). After
the B correction has been put on, the value of « may require readjustment to obtain
the proper fit. ,

The values of «, sin {& and QT so determined are given for each half-period of each

-round in Table II., together with sin 18 and \ obtained from the equation X = K/QT.
We then obtain s, ¢ and b from equations (15)-(17).* From the values of s and ¢ and
the other observational data we can calculate fy sin § as a function of v/a and § from
formule (3) and (4). The results are shown in figs. 1 and 2, and Tables I. and III.,
and have already been discussed. '

The damping effects appear in the variation of the various constants from one
half-period to another. In general, s increases approximately at the rate required by
theory, i.e., inversely as the square of the velocity at the middle point of the half-

period.f

* When « is much less than 45 degrees the method breaks down, as x cannot be determined satisfactorily
from the observational curves. The method explained in (A), p. 343, could then be employed. This is
equivalent to assuming ¢ = 0 and using formula (16) to determine « given sin Ja and A. Under these
conditions sin fa is so small that the value of ¢ does not appreciably affect either the value of s or the shape
of the curve of fy against 8.

T Theoretically, s should increase while ¢ should remain roughly constant. But sin{« is common to
the first and second half-period, while A is determined mainly by the shape of the curve near the maximum.
Hence, in general, « alone varies between the first and second half-periods. It appears that the result of
varying « only in formule (15, 16) is to produce a fictitious decrease in ¢ while the increase of s is diminished
as may be seen in Table II. For this reason mean values for the whole period are used in constructing
figs. 1 and 2.
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TaBLe 1I.—General Table of Results.
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Column 1. Number of round and number of half-period for the round (in brackets).

» 2. Muzzle velocity, f.s., for round or mean for group.

» 3. Air density p, 1b./(ft.)’, and temperature,® .

» 4. Q (= AN/B), radians/sec.

» 5. QT, radians, where T is the observed duration (sec.) of each half-period.

»» 6. Observed values of sin fa, where « is the maximum yaw,

» 1. Observed values of sin {3, where § is the minimum yaw.

»» 8. Values of «, degrees, where k(= sin «) is the modulus of the elliptic
function which fits the observations.

» 9. Values of A (= K/QT), where K is the complete elliptic integral of the
first kind for the value of « in (8). :

1 2 3 4 5 6 7 8 9
.8 (1) 1049 0-0792 84-2 17-5 0-276 — 79 0-172
.9 (1) 1084 43° 86-9 19-8 0-251 — 83 0-154

(2) 16-2 0-251 — 70 0-155
I.10 (1) 1084 86-9 15-2 0-245 — 75 0-182
L 17 (1) 1312 0-0812 105-2 16-6 0-192 — 75 0-167
(2) 40° 13-8 0-192 0-020 65 0-167
1.18 (1) 13-5 0-203 —- 75 0-205
" (2) 12-0 0-203 0-049 70 0-209
L5 (1) 1582 0-0782 125-4 13-8 0-108 — 40 0-130
(2) 45° : 15-6 0-108 - — 57 0-133
(3) 12-0 0-070 — 20? 0-135
.6 (1) 13-6 0-118 — 45 0-136
(2) 14-4 0-118 — 35 0-120
L7 (1) 24-0 0-090 — 56 0-086
(2) 19-5 0-090 0-018 0? 0-082
II. 11 (1) 1107 0-0807 81-9 18-2 0-161 — 57 0-114
(2) 42° 14-6 0-161 0-055 20°? 0-112
I1.12 (1) 20-8 0-148 — 52 0:095
(2) 16-4 0-148 0-075 35 0-105
I1.13 (1) 22-0 0-183 — 70 0-114
(2) 14-4 0-183 0-046 53 0-138
| |

VOL. CCXXII.—A. 2 M
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Tasrr II. (continued).

| {
1 2 3 4 5 | 6 1 8 9
|
|
II. 14 (1) 1334 0-0812 98-6 18-4 0-135 — 60 0-119
2 40° 19-8 0-135 0-014 55 0-105
II.151(1) 166 0-122 — 48 0-117
* 16f(2) 15-9 0-122 0-012 35 0-111
|
1
ITI. 11 (1) 1077 0-0807 99-0 340 0-332 | e 84 0-107
II1.12 (1) 90 | 32-0 - | 0-290 — 85 0-120
II1. 13 (1) ' 28-4 0-301 | — 85 0-135
IIT. 14 (1) 1312 0-0812 120-4 22-0 0-204 — 78 0-135
@) 40° 17-2 0-204 — 70 0-146
II1. 15 (1) 18-0 0-207 — 75 0-154
(2) 14-5 0-207 0-053 55 0-141
3) 13-9 0-187 0-053 55 0-147
ITL. 16 (1) 21-8 0204 —_ 80 0-145
() 15-6 0-204 | 0037 - 60 0-138
(3) 17-0 0-179 ©  0-037 40 0-105
f
IV.10 (1) 884 0-0807 625 16-5 0-233 |  — 70 0-152 |
(@) 49° 13-3 0-233 & — 50 0-145
IV. 11 (1) 21-0 0-225 = 78 0-142
(2) 15-0 0-225 e 50 0-129
IV.12 (1) 200 0-201 - 7 0-145
(2) 14-5 0-207 +  — | 62 0-153
| :
| » 1
Iv.7 (1) 1553 0-0779 109-7 155 0-213 | —_— 83 0-226
IV.8 (1) 47° 18-0 0-199 ] — 85 0-213
(@) 13-0 0-199 | 0-034 75 0-213
V.9 (1) 115 0-218 | — 70 0-218
t : 1
B
Iv.1 (1) 2130 0-0782 150-6 12-5 0-160 — 66 0-187
(2) 45° 12-9 0-160 0-018 65 0-179
IV.2 (1) 18-0 0-157 — 82 0-187
i (2) 14-2 0-157 0-013 70 0-176
IV.3 (1) 17-0 0-160 —— 80 0-185
) : 14-8 0-160 ' — 75 0-187
IV.5 (1) 155 0-160 — T4 0-175
(2) 13-9 0-160 | 0-015 70 0-180
| |

* II. (15 and 16) are practically indistinguishable. These values refer to their mean.
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Tasre III.—Mean values, for each group, of s, ¢ and ©; the corresponding values of
7/a and fy (¥/a, 0); and the percentage spread in s. Hach half-period is treated
separately in each group.

Percentage N B
Group. ‘ s. spread q. . v/a. Jare
in s.
I.810 (1) 0-896 0-8 0-213 1063 0-965 11-80
1.9 (2) 0-932 — 0-084 1053 0-956 11-56
1.17,18 (1) 0-892 4-3 0-578 1297 1-181 11-61
1.17,18 (2) 0-908 5-5 0-597 1264 1-150 12-01
1. 5-7 (1) 1-000 2-3 0-398 1560 1-413 10-56
I.5-7 (2) 1-007 56 0-507 1517 1-375 11-08
L5 (3) 1-060 — — 1494 1-354 10-86
II.11-13 (1) 0-977 3-1 0-068 1094 0-994 10-34
II. 11-13  (2) 1-014 5-5 —0-04 1075 0-977 10-30
II. 14-16 (1) 0-987 - 2-1 0-284 1315 1-198 10-20
II. 1416 (2) 1-006 3-2 0-066 1286 1-171 10-47
III. 11-13 (1) 0-946 2-6 —0-119 1063 0-966 13-08
III. 14-16 (1) 0-931 1-8 0-203 1296 1-180 13-10
II1. 14-16  (2) 0-959 3:6 0-118 1263 1-150 13-43
II1. 15, 16 (3) 0-990 3.7 —_— 1239 1-128 13-52
Iv.10-12 (1) 0-934 0-3 0-146 877 0-797 10-00
Iv.10-12 (2) 0-975 3-8 0-033 866 0-787 9-79
Iv.7-9 (1) 0-852 4-5 0-793 1532 1-385 11-40
IV. 8 (2) 0-864 — 0-820 1488 1-345 11-93
IV.1-3,5 (1) 0-897 35 0-987 2102 1-905 10-80
IV.1-3,5 (2) 0-907 35 0-885 2052 1-860 11-20

The values of fy here given are not corrected for the effect of the cards.

§9. The Values of b.

The value of b represents the initial angular velocity of the axis of the shell, for at the
beginning of the first half-period rosette motion may be assumed and &' = 0Q. The
values of b for each round are given in Table IV.

TasLe IV.—Values of b (= &,/Q2), where &', is the initial angular velocity of the axis
of the shell.

Group. Values of b. Mean. Group. Values of b. Mean.

1. 8-10 0-018 0-011 0-023 | 0-017 ||III. 11-13| 0-007 0-006 0-007 | 0-007
1.17,18 | 0-017 0-022 ' 0-019 || III. 14-16 | 0-011 0-016 0-011 | 0-013
I. 5-7 0-021 0-023 0-009 | 0-018 || IV.10-12| 0-024 0-013 0-013 | 0-017
II. 11-13 | 0-020 0-017 0-014 | 0-017 || IV.7-9 0-012 0-007 0-032 | 0-017
II.14-16 | 0-016 0-018 0-018 | 0-017 || IV.1-3,5| 0-024 0-008 0-010
0-015 0-014

by
-
=
o


http://rsta.royalsocietypublishing.org/

i \
I \

a
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

y

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

246 MESSRS. R. H. FOWLER AND C. N. H. LOCK ON

They represent the size of the initial disturbance which upsets the nose-on motion,
and vary irregularly in any one group, as might be expected. Their general size,
however, is remarkably consistent from group to group. The corresponding values
for the stable rounds and rough values for some of the rounds here analysed have been
discussed by us in a previous paper.* The further results here given confirm the state-
ments of that paper ; the mean value of 6 for any group is practically constant some-
where between 0-01 and 0-02 for all groups fired.

§ 10. Allowance for the Effect of Cards.

In obtaining figs. 1 and 2 and Table 1., but not in other cases, a small correction
has been made to the value of the couple to allow for the impulsive action on the shell
when it strikes a card. The amount of this correction was calculated from a few special
rounds fired with cards on the far screens only. The following argument indicates
that the effect should be roughly proportional to the couple due to the air and
independent of other factors except the number of cards and the muzzle velocity.
The effect of each card may be considered as an impulsive force whose moment about
the centre of gravity is roughly proportional to sin d. If the cards are (as they were)
uniformly distributed in space and therefore in time, there will be a total impulse per
second which is proportional to sin §, and if the cards are not too far apart this is
equivalent to a steady couple roughly proportional to the couple due to the air. The
correction worked out in the case of the stable rounds at from 3 per cent. to 4 per cent.
depending on the muzzle velocity. In view of the preceding argument the same
corrections are applied here.

§ 11. Concluding Remarks.

In view of possible future experiments it is of interest to compare the merits of the
stable and unstable rounds for the purpose of this analysis. A large proportion of
the rounds analysed in (A) had a stabitity coefficient s of about 1-8. The advantages
of this are that the theory of the motion is practically complete, and in addition to
the values of fy as a function of v/a rough values of the damping factors were obtained,
which could be greatly improved if a longer range were available. The maximum
yaw, however, is small, so that small errors in the determination of the yaw are
important, while the periods are short so that, unless the cards are close together, it is
difficult to draw curves through the observation points with sufficient certainty to
determine the periods accurately.

For the unstable rounds here analysed the theory is imperfect as regards the
determination of damping. But a small change in the value of the couple M will

* ¢ Proc. Camb. Phil. Soc.,” vol. XX, p. 311, 1921.
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make a large change in the type of motion, so that the method is now a very sensitive
one for determining the couple, and no great accuracy of observation is required.
The yaw developed is also much larger, so that values of the couple are determined
over a larger range of yaws. ’

From the point of view of general aerodynamical theory the results form a preliminary
contribution to the problem of determining the force system impressed by the air on a
body moving unsymmetrically through a fluid at velocities at which the compressibility
of the fluid produces marked effects.
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